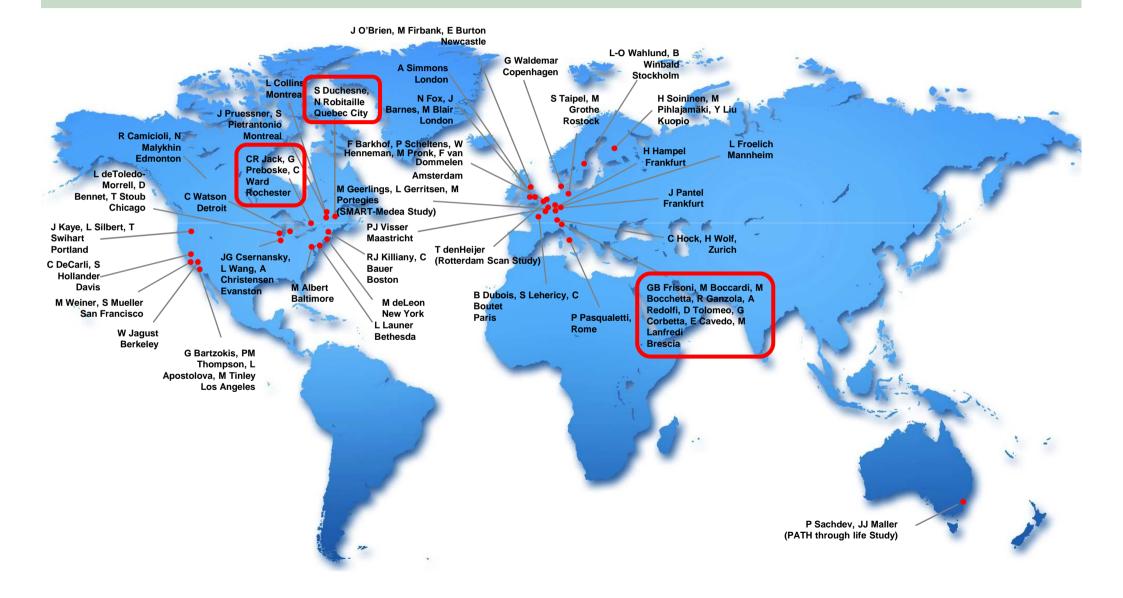


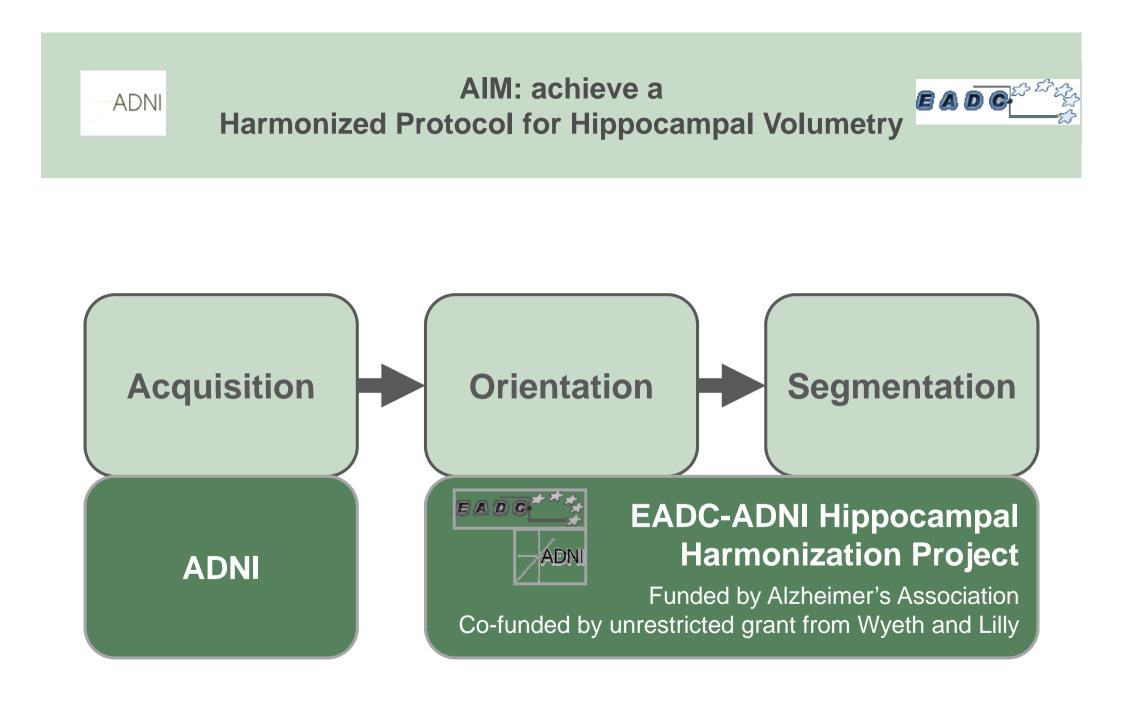
AÐNI

Delphi Consensus for a Harmonized Protocol for Manual Hippocampal Segmentation: an EADC-ADNI Project


M Boccardi, M Bocchetta, L Apostolova, J Barnes, G Bartzokis, G Corbetta, C DeCarli, L deToledo-Morrell, M Firbank, R Ganzola, L Gerritsen, W Henneman, RJ Killiany, N Malykhin, P Pasqualetti, JC Pruessner, A Redolfi, N Robitaille, H Soininen, D Tolomeo, L Wang, C Watson, H Wolf, S Duchesne, CR Jack Jr, GB Frisoni.

Disclosures: the project is funded by the Alzheimer's Association, and co-funded by unrestricted grants from Lilly and Wyeth (part of the Pfizer group)

The EADC-ADNI Working Group on the Harmonized Protocol for Hippocampal Volumetry



BACKGROUND Over 40 different segmentation protocols

Ref.	Med border	Lat border	Inf border	Norm. hippo vol (cm ³)		
				Left	Right	
Watson et al.	Mesial edge of temporal lobe	Temp horn of lat ventr	Incl subicular complex & uncal cleft w/ border separating subicular complex from parahippo gyrus	4.903	5.264	
Zipursky et al.	Regional outline at choroidal fissure	Not mentioned	The interface of hippocampal tissue and parahippocampal gyrus white matter	1.990	2.070	

Geuze et al., Mol Psychiatry 2005;10:147-59 Konrad et al., Neuroimage, 2009;47:1185-95

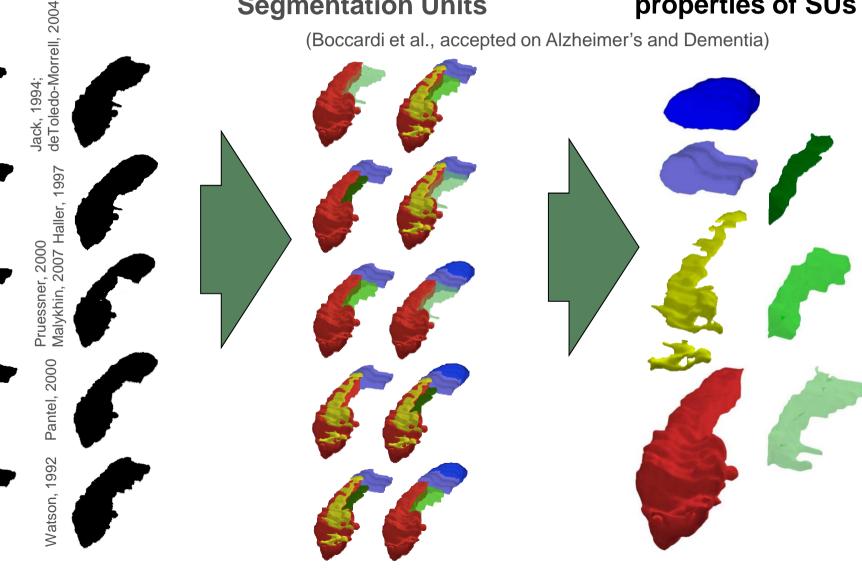
Operationalization of

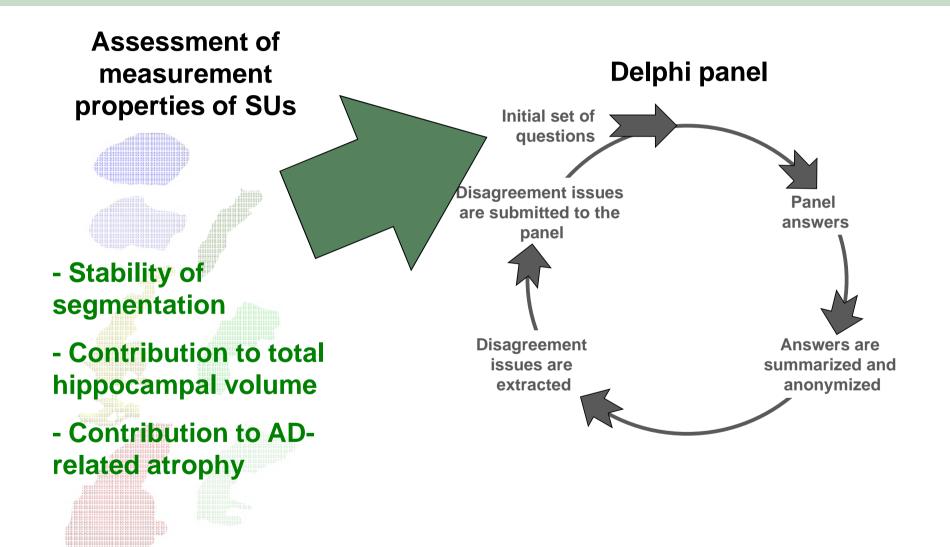
differences into

Segmentation Units

Survey

(Boccardi et al., JAD 2011)


Bartzokis, 1998


Convit, 1997

Lehericy, 1994 Soininen, 1994 Killiany, 1993

Assessment of measurement properties of SUs

(Boccardi et al., accepted on Alzheimer's and Dementia)

Delphi Panel

J. Barnes London

G. Bartzokis Los Angeles

C. DeCarli Sacramento

L. de Toledo-Morell Chicago

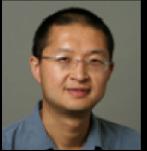
M. Firbank Newcastle

L. Gerritsen Stockholm

W. Henneman Amsterdam

C.R. Jack Jr. Rochester

R. Killiany Boston


N. Malykhin Edmonton

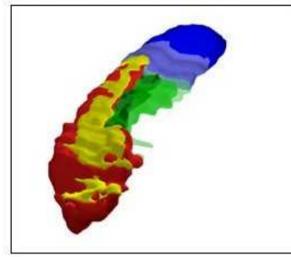
J. Pruessner Montreal

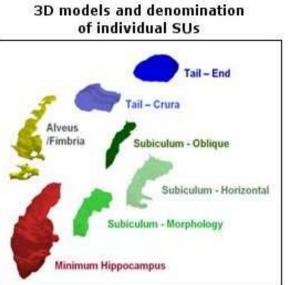
H. Soininen Kuopio

L. Wang Chicago

C. Watson Detroit

H. Wolf Zurich




- On-line questionnaire accessible with private credentials
- 9-levels Lickert's scale for expressing level of agreement
- **Boxes** for a) justification to answers b) free comments
- **Fisher's exact** (for Lickert) and **Binomial** (for dichotomized agreement/disagreement) to evaluate statistical significance for convergence

In subsequent rounds:

- Feedback about previous answers:
 - a. summary of **reasons** for different answers
 - b. original answers anonymized
 - c. statistics about convergence on previous rounds
 - (d. further info when possible/necessary)

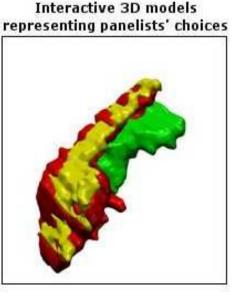
SUs composing the total hippocampus

"To what extent do you agree in including the (e.g.: Alveus/Fimbria) in the Harmonized Protocol?"

Quantitative information for individual SUs

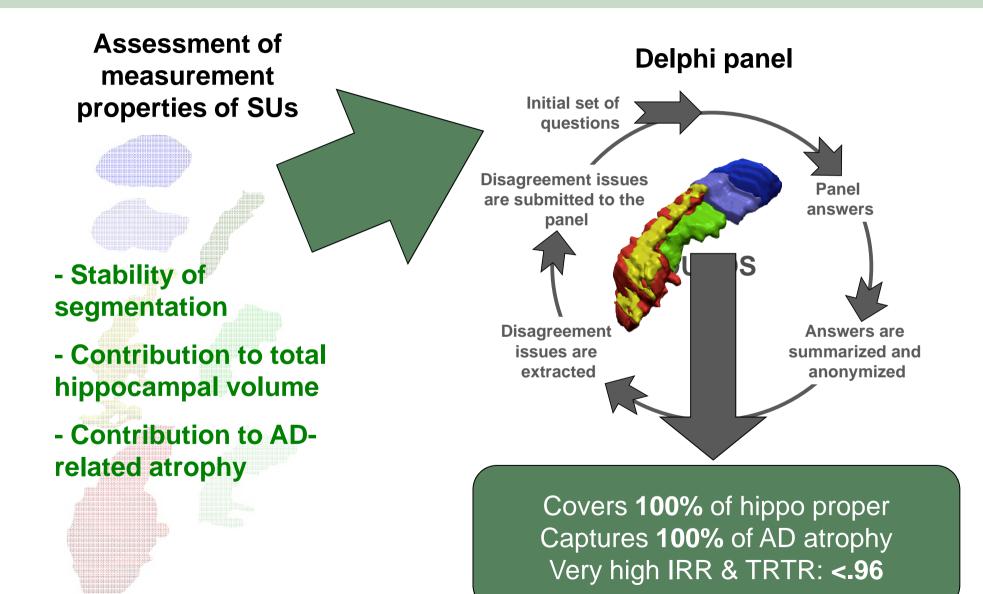
MinH is the portion of hippocampus included by all of the examined protocols. It is defined by the most restrictive (riteria for the tracing of superior, methal, lateral and caudal boundaries, across available protocols. It includes the head and part of the body of the hippocampus. Minit compounds 60% of the Maximum Hippocampus Volume.

Intra rater re-test reliability for MinH is 0.992.


Inter rater re-test reliability for Minit is 0.074.

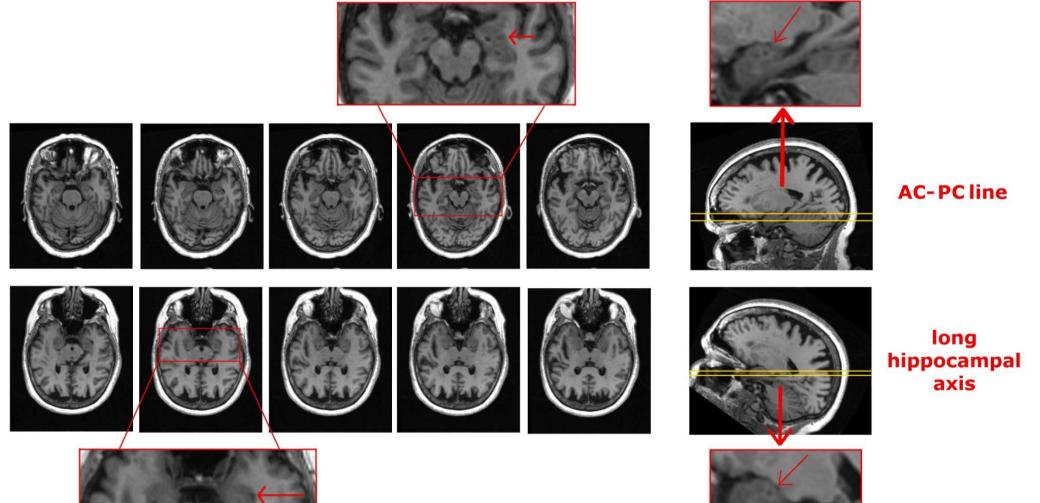
The percent flasse loss of Mhitt in AD compared to controls is 28,54%.

Its global impact on the total volume difference due to AD is of 67%.


This difference is of course affected by the size of the Sit. Minit is included by all protocols and therefore it is considered as the minimum hippocampus that can be segmented in a harmonized protocol.

Here you can find all values about SUs (PDF) (*)

1 2 3 4 5 6 7 8 9 Do not Agree agree


RESULTS

RESULTS

			Likert scores			
			9876	5	4321	
	Round	Median	Agree	Neutral	Disagree	р
			N (%)	N (%)	Ν	
Segmentation Unit selection						
Inclusion of alveus/fimbria	II	9	13 (81%)	0 (0%)	3 (19%)	0.021
Segmentation of subiculum (morphology - I choice)	III	7.5	11 (69%)	4 (25%)	1 (6%)	0.006
Segmentation of subiculum (horizontal - II choice)	III	-	13 (81%)	0 (0%)	3 (19%)	0.021
Inclusion of tail end	III	9	12 (75%)	2 (12.5%)	2 (12.5%)	0.013
Harmonized Hippocampus	II	8	14 (88%)	1 (6%)	1 (6%)	0.001
Segmentation procedures						
Disambiguating amygdala with 3D navigation	II	8	16 (100%)	0 (0%)	0 (0%)	< 0.000
Inclusion of vestigial tissue	III	-	10 (63%)	-	6 (37%)	n.s.
CSF pools	III	8	14 (88%)	0 (0%)	2 (12%)	0.004
Not visible structures (final definition)	III	8	16 (100%)	0 (0%)	0 (0%)	<0.000
Separating Alveus/Fimbria from fornix	IV	8	12 (82%)	0 (0%)	1 (8%)	0.003
AC-PC Image orientation	V	9	11 (79%)	2 (14%)	1 (7%)	0.006

Discussion

1. Harmonized Protocol

- Consensual criteria for harmonized hippo segmentation are defined
- They are translated into an operational protocol
- The Harmonized Protocol now requires validation

2. Evidence-based Delphi panel

- The justification for answers showed that the quantitative information provided was actually used to weigh pros and cons of each choice, and complement personal experience
- Restrictive criteria for accepting decision (not just majority/median value, but significance at stat test)

3. Benchmark images

- 5 Master Tracers are completing segmentations based on the Harmonized Protocol, serving learning and certification of the "naïve" tracers in the validation phase

FUTURE STEPS

1. Develop a qualification environment and thresholds for

- naïve tracers
- automated algorithms

2. Validate on:

- 1800 ADNI hippocampi segmented by 20 human tracers
- 20x2 (R&L) hippocampi with volume on pathology, neuronal density, and *ex vivo* MR

3. Availability of protocol and benchmark masks:

- Until the end of validation process (summer 2013), restricted to beta-testers based on ad hoc agreements

- Free afterwards

More info at www.hippocampal-protocol.net

A HARMONIZED PROTOCOL FOR HIPPOCAMPAL VOLUMETRY: AN EADC-ADNI EFFORT

About the Project

Outcomes

News & Events

References

PUBLICATIONS

Full Papers

Frisoni GB, Jack CR.

Harmonization of magnetic resonance-based manual hippocampal segmentation: A mandatory step for wide clinical use. Alzheimer's & Dementia, Volume 7, Issue 2, Pages 171-174, March 2011.

Jack CR, Barkhof F, Bernstein MA, Cantillon M, Cole PE, DeCarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, Hampel H, Hill DLG, Johnson K, Mangin J, Scheltens P, Schwarz AJ, Sperling R, Suhy J, Thompson PM, Weiner M, Foster NL. Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease. Alzheimer's & Dementia, Volume 7, Issue 4, Pages 474-485, July 2011.

Boccardi M, Ganzola R, Bocchetta M, Pievani M, Redolfi A, Bartzokis G, Camicioli R, Csernansky J, de Leone MJ, deToledo-Morrell L, Killiany RJ, Lehericy S, Pantel J, Pruessner JC, Soininen H, Watson C, Duchesne S, Jack CR Jr, Frisoni GB. Survey of Protocols for the Manual Segmentation of the Hippocampus: Preparatory Steps Towards a Joint EADC-ADNI Harmonized Protocol.

Journal of Alzheimer's Disease, Volume 26, Issue 0, Pages 61-75, January 2011.

Acknowledgements

Mike & Barbara Urbut, Stuart & Amy Savitz, Harriet K. Burnstein, Chicago, IL

Maria Carrillo, Meredith McNeil Alzheimer's Association, Chicago IL

All partners

Delphi Panel

J. Barnes London

G. Bartzokis Los Angeles

C. DeCarli Sacramento

L. de Toledo-Morell Chicago

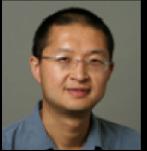
M. Firbank Newcastle

L. Gerritsen Stockholm

W. Henneman Amsterdam

C.R. Jack Jr. Rochester

R. Killiany Boston


N. Malykhin Edmonton

J. Pruessner Montreal

H. Soininen Kuopio

L. Wang Chicago

C. Watson Detroit

H. Wolf Zurich

