

Marina Boccardi, Martina Bocchetta, Rossana Ganzola, Nicolas Robitaille, Alberto Redolfi, George Bartzokis, Richard Camicioli, John G. Csernansky, Mony J. de Leon, Levla de Toledo-Morrell, Ronald J. Killiany, Stéphane Lehéricy, Johannes Pantel, Jens C, Pruessner, Hilkka Sojninen, Craig Watson, Simon Duchesne, Clifford R, Jack Jr, Giovanni B Frisoni,

LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine) IRCCS – S. Giovanni di Dio – Fatebenefratelli Brescia, Italy (MB, MBocch, RG, AR, GBF); Department of Radiology, Université Laval and Centre de Recherche Université Laval – Robert Giffard, Quebec City, Canada (NR, SD); Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA (GB); Department of Biomedical Engineering, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada. (RC); Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA (JGC); New York University School of Medicine, Center for Brain Health, New York, NY (MJdL); Dept. of Neurological Sciences, Rush University, Chicago, Illinois (LdTM); Department of Anatomy and Neurobiology, Boston University School of Medicine (RJK); Center for Neurologing Research - CENIR and Dept of Neuroradiology, Université Pierre et Marie Curie-Paris 6. Groupe Hospitalier Pitié-Saloêtrière, Paris, France (SL): Department of psychiatry and Psychoterapy, University of Frankfurt/Main, Germany (JP): McGill Centre for Studies in Aging, Department of Psychiatry, McGill University, Montreal, Quebec, Canada (JCP) Dept of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland (HS), Wayne State University School of Medicine, 8D-University Health Center, St, Antoine, Detroit, MI (CW); Department of Diagnostic Radiology, Mayo Clinic and Foundation, Rochester, MN (CJ)

Introduction

A harmonized procedure is required, since quantitative MRI is to be used for diagnosis and tracking of Alzheimer's disease (AD). A survey of segmentation protocols allowed the identification of anatomical sources of heterogeneity in volume estimates. To identify differences among various MRI-based hippocampal segmentation protocols and provide quantitative information supporting decisions for an international harmonized protocol.

We operationalized landmark differences among protocols into segmentation units (SUs). We computed intra- and interrater reliability for each SU for both expert and naïve tracers on 20 ADNI scans (4 subjects per degree of visual medial temporal atrophy that we computed according to Scheltens et al. 1992), and estimated the contribution of SUs to the volume difference between AD, MCI and control subjects on a sample of 77 subjects, computed for having sufficient power to detect the informative value of each SU about AD-related atrophy. The 20 subjects for the computation of ICCs were 8 healthy controls, 3 AD, and 9 MCI patients. The 77 subjects were 31 controls with normal CSF Aß levels, 23 (subsequently converted) MCI, and 23 AD patients. All MCI and AD had abnormal CSF Aß levels.

We defined four SUs: Minimum Hippocampus (MinH), Alveus/Fimbria, Tail, and Subiculum. Reliability figures for SUs were >0.963 for intra-, and >0.905 for inter-rater, except Alveus/Fimbria (intra-rater: 0.863: inter-rater: 0.885). Noticeably, the intra-rater reliability of MinH and Alveus/Fimbria traced together (intra-rater: 0.993, 95% confidence interval: 0.983-0.997) was significantly higher than that of Alveus/Fimbria (95% confidence interval: 0.687-0.944). The intra-rater reliability re-computed by the naïve tracer provided analogous figures. The average volume difference between patients and controls was 538 mm³, with MinH contributing to over 66% of this difference, Tail 27%, Alveus/Fimbria 12%, Subiculum over 5%. The SU volume differences between patients and controls were significant for all SUs except the Subiculum.

ADN

Intra- and inter-rater reliability of SUs computed on 20 ADNI subjects (4 by each degree of severity of hippocampal atrophy at the visual scale by Scheltens et al., 1992)				Rendering of the Maximum Hippocampus, composed by the sum of all SU. This is the largest	Segmentation Units volumes in controls, MCI and AD patients.	- MinH	Controls (n=31) 1467 (204)	LE MCI (n=23) 1122 (263)	EFT HIPPOCAM AD (n=23) 1023 (251)	PUS MCI vs A CTR <0,0005	p p D vs CTR MCI v <0,0005	7 p es AD AD+MC CTR 0,199 <0,0	2I vs 0005	MinH	Controls (n=31) 1467 (204)	% of total hippo 60%	LEFT HIPP MCI (n=23) 1122 (263) 272 (61)	OCAMPUS AD (n=23) 1023 (251) 200 (49)	% diff % MCI vs CTR (i 23,5%	MCI vs % CTR A mpact) C 71%	diff % AD D vs CTR (im TTR 30%	vs pact) 68%	Informative value of Segmentation Units for AD-related
6	MinH	Intra- rater 0.992	Inter- rater 0.974	possible hippocampus that can be segmented in theory considering the landmarks denoting the less restrictive definition for all sectors.	Numbers denote mean volume (mm3) and standard deviation (in	Alveus/fimbria Subiculum Oblique line Morphology Horizontal line	248 (45) 243 (72) 196 (67) 243 (72) 234 (72)	232 (61) 220 (84) 178 (66) 220 (84) 210 (78)	200 (48) 213 (64) 176 (53) 213 (64) 211 (62)	0,269 0,279 0,338 0,279 0,243	<0,0005 0,118 0,262 0,118 0,221	0,055 0,754 0 0,936 0 0,754 0 0,957 0	0,01 0,121 0,207 0,121 0,153	Alveus/Imbria Subiculum Oblique line Morphology Horizontal line	248 (43) 243 (72) 196 (67) 243 (72) 234 (72)	10% 8% 10% 9%	232 (61) 220 (84) 178 (66) 220 (84) 210 (78)	200 (48) 213 (64) 176 (53) 213 (64) 211 (62)	0,5% 9% 9,5% 10%	3% 5% 3,5% 5%	19% 12% 10% 12% 10%	7% 4,5% 3% 4,5% 3,5%	atrophy. Volumes (SD) are the same as in Table 2. Percent values
and the second second	Alveus/fimbria MinH+Alveus/fimbria	0.863 0.993	0.885 0.973		Segmentation Units. denotes significance on t-test. Data are) Crura End Tail MaxHV	485 (131) 190 (74) 296 (120) 2443 (291)	ual (151) 333 (97) 3.01 (01) 0.000 0.000 0.0000 0.0001 1am 190 (74) 177 (70) 146 (69) 0.538 0.034 0.14 0.101 Crura 296 (120) 206 (76) 206 (86) 0.003 0.004 0.984 <0.0005	Tan Crura End Tail MaxHV	480 (111) 190 (74) 296 (120) 2443 (291)	20% 8% 12% 100%	383 (99) 177 (70) 206 (76) 1957 (348)	146 (69) 206 (86) 1788 (342)	21% 6,5% 30% 20%	21% 2,5% 18,5% 100%	27% 23% 6 30% 27%	6,5% 14% .00%	of the SU compared to the total hippocampal volume					
	Subiculum	0.770			obtained on an ADNI sample of 77 subjects: 31 controls with	MinH Alveus/fimbria	Controls (n=31) 1462 (232) 255 (47)	MCI (n=23)	AD (n=23)	P MCI vs A CTR <0,0005 0,84	P D vs CTR MCI <0,0005 0,05	p p vs AD AD+M CTI 0,039 <0,0 0,103	P D+MCI vs CTR <0,0005 0,35	MinH Alveus/fimbria	Controls (n=31) 1462 (232) 255 (47)	% of total hippo 60% 11%	MCI (n=23) 1214 (247) 258 (71)	AD (n=23) 1061 (241) 225 (65)	% diff % MCI vs CTR (i 17% -1%	MCI vs % CTR A mpact) C 62% -0.5%	diff % AD D vs CTR (imp 27% 12%	vs pact) 66%	(% of total hippo), the percent difference of the SU between
	Oblique line Morphology	0.964 0.981	0.907 0.937		normal CSF Aβ levels, 23 (subsequently converted) MCI, and	 Subiculum Oblique line Morphology Horizontal line 	225 (79) 181 (67) 225 (79) 220 (78)	208 (89) 167 (71) 208 (89) 203 (83)	184 (56) 150 (46) 184 (56) 182 (54)	0,459 0,455 0,459 0,459	0,042 0,059 0,042 0,053	0,294 0 0,334 0 0,294 0 0,309 0	0,109 0,122 0,109 0,117	Subiculum Oblique line Morphology Horizontal line	225 (79) 181 (67) 225 (79) 220 (78)	9% 8% 9%	208 (89) 167 (71) 208 (89) 203 (83)	184 (56) 150 (46) 184 (56) 182 (54)	8% 8% 7,5%	4% 3,5% 4%	18% 17% 18%	6,5% 5% 6,5% 6%	groups (% diff), and the impact of the SU on the total volume
	Horizontal line	0.980	0.932		23 AD patients. All MCI and AD had abnormal CSF Aβ levels.	Tail Crura End Tail MaxHV	487 (151) 187 (75) 301 (120) 2429 (303)	349 (115) 169 (68) 181 (113) 2029 (372)	349 (131) 140 (69) 209 (110) 1820 (369)	0,001 0,37 <0,0005 <0,0005	0,001 0,025 0,006 <0,0005	0,999 <0,1 0,17 0 0,394 <0,1 0,062 <0,1	,0005 0,058 ,0005 ,0005	Tail Crura End Tail MaxHV	487 (151) 187 (75) 301 (120) 2429 (303)	20% 8% 12%	349 (115) 169 (68) 181 (113) 2029 (372)	349 (131) 140 (69) 209 (110) 1820 (369)	28,5% 10% 40%	34,5% 4,5% 30%	1,5% 22,5% 25% 7,5% 31% 15% 25% 1009	2,5% 7,5% 15%	patients and controsl.
	Crura Tail End	0.998 0.988	0.937 0.905		Conclus	sions	Relia be in	ability o Icluded	f indivio in a ha	dual SL rmoniz rinsic h	Is and ho ed proto armoniz	ow infor col. Pre	mative cise o	ve they are definition a	in ident and dedi	ifying cated	AD-rel attenti reliabil	ated at on to h	rophy eterog	will he eneity	elp defir among	ne wł g ana	hich SUs should atomical landmarks